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Question 1 [13 marks] 

a) State the definition of a field. [4] 

b) Outline the construction of the field of the complex numbers which has been carried 
out in class. Proofs are not required. [5] 

c) Consider the relation i = /—1. Is this the definition of 7? What is the meaning of 
this relation? Is —i = /—1 true? Explain. [4] 

Question 2 [10 marks] 

a) Complex conjugation is an involutory automorphism of the field C with fixed point 

field R. Explain what this statement means. [4] 

b) Let f:C — C be an involutory automorphism of C with fixed point field R. 

i) Find f(#). [3] 

ii) Show that f is equal to complex conjugation. [3] 

Question 3 [13 marks] 

a) If z € C, state the definition of |z|. Show that the absolute value of the field C, 
which is used in complex analysis, is an extension of the absolute value of the field 

R. [4] 

b) Let z,w EC. 

i) Find |z + w|? — |z|? — |w/?. [4] 

ii) Show that 
|z + wl? = |z|? + |w|? — Re(zw) = 0. 

[5]



Question 4 [15 marks] 

You are reminded of the definition of the circle group S: 

S:={zeEC| |z|=1}. 

a) Let f:IRt — S be defined by 

f(v) = cosy + (sin yi. 

Show that f is a surjective homomorphism and find the kernel of /f. [9] 

b) Let gy € Rand k € Z. Since f is a homomorphism, f(y)* = f(ky) is true. Write 
down this formula without using f. What is the name of this formula? [3] 

c) Make the modulus-argument form of a non-zero complex number. [3] 

Question 5 [19 marks] 

Let ao, @1,.--,@n € C and let f:C — C be defined by 

f(z) = So az, 
k=0 

a) What is the degree of f? State the definition. [3] 

n—1 

b) Now assume that n € N and a, # 0. If z € C such that |z| > max{1, eal S> lag}, 
k=0 

show that i 

[f(z)| = 5 lanl lz1”. 

[8] 

c) Prove that lim f = co. [8] 
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Question 6 [15 marks] 

Let S*a,2z* be a power series. The summation starts at 0. Let ¢ > 0 such that N-(0) is 

contained in the set of convergence of }>a,z* and let f:N.(0) — C be defined by 

f@= > az". 
k=0 

Assume that f is not constant. 

a) Why does m := min{k € N| a, # 0} exist? Explain! [2] 

b) Show that ~ 

f(z) = ao +2” S> Ckim2", 

k=0 

for all z € N,(0). [4] 

c) Prove that 0 is an isolated point of f~(0). [9] 

Question 7 [15 marks] 

a) State Goursat’s lemma. This lemma is important for two reasons. State these 
reasons. [4] 

b) Let O C C be open and a € O. Let f:O — C be a function which is holomorphic 

in O— {a} and continuous at a. Let {a,b,c} be a triangle such that the convex hull 
(a, b,c) of {a,b,c} is contained in O. Prove that 

F(¢) de = 0. 
[a,8]-+1b,<]-+le,a] 

(3) 

c) State Cauchy’s integral formula for a disc. [3] 

End of the question paper


